Generalized Cramer-Rao Bound for Joint Estimation of Target Position and Velocity for Active and Passive Radar Networks

نویسندگان

  • Qian He
  • Jianbin Hu
  • Rick S. Blum
  • Yonggang Wu
چکیده

In this paper, we derive the Cramer-Rao bound (CRB) for joint target position and velocity estimation using an active or passive distributed radar network under more general, and practically occurring, conditions than assumed in previous work. In particular, the presented results allow nonorthogonal signals, spatially dependent Gaussian reflection coefficients, and spatially dependent Gaussian clutter-plus-noise. These bounds allow designers to compare the performance of their developed approaches, which are deemed to be of acceptable complexity, to the best achievable performance. If their developed approaches lead to performance close to the bounds, these developed approaches can be deemed “good enough”. A particular recent study where algorithms have been developed for a practical radar application which must involve nonorthognal signals, for which the best performance is unknown, is a great example. The presented results in our paper do not make any assumptions about the approximate location of the target being known from previous target detection signal processing. In addition, for situations in which we do not know some parameters accurately, we also derive the mismatched CRB. Numerical investigations of the mean squared error of the maximum likelihood estimation are employed to support the validity of the CRBs. In order to demonstrate the utility of the provided results to a topic of great current interest, the numerical results focus on a passive radar system using the Global System for Mobile communication (GSM) cellar system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Target Tracking with Unknown Maneuvers Using Adaptive Parameter Estimation in Wireless Sensor Networks

Abstract- Tracking a target which is sensed by a collection of randomly deployed, limited-capacity, and short-ranged sensors is a tricky problem and, yet applicable to the empirical world. In this paper, this challenge has been addressed a by introducing a nested algorithm to track a maneuvering target entering the sensor field. In the proposed nested algorithm, different modules are to fulfill...

متن کامل

Cramer-Rao Lower Bound Evaluation for Linear Frequency Modulation Based Active Radar Networks Operating in a Rice Fading Environment

This paper investigates the joint target parameter (delay and Doppler) estimation performance of linear frequency modulation (LFM)-based radar networks in a Rice fading environment. The active radar networks are composed of multiple radar transmitters and multichannel receivers placed on moving platforms. First, the log-likelihood function of the received signal for a Rician target is derived, ...

متن کامل

Efficiency of Target Location Scenarios in the Multi-Transmitter Multi-Receiver Passive Radar

Multi-transmitter multi-receiver passive radar, which locates target in the surveillance area by the reflected signals of the available opportunistic transmitter from the target, is of interest in many applications. In this paper, we investigate different signal processing scenarios in multi-transmitter multi-receiver passive radar. These scenarios include decentralized processing of reference ...

متن کامل

DOA estimation and multi-user interference in a two-radar system

Multistatic radars utilize multiple transmitter and receiver sites to provide several different monostatic and bistatic channels of observation. Multistatic passive and active radar systems can offer many advantages in terms of coverage and accuracy in the estimation of target signal parameters. Unfortunately, their performances are heavily sensitive to the position of receivers and transmitter...

متن کامل

A Soft-Input Soft-Output Target Detection Algorithm for Passive Radar

Abstract: This paper proposes a novel scheme for multi-static passive radar processing, based on soft-input soft-output processing and Bayesian sparse estimation. In this scheme, each receiver estimates the probability of target presence based on its received signal and the prior information received from a central processor. The resulting posterior target probabilities are transmitted to the c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Signal Processing

دوره 64  شماره 

صفحات  -

تاریخ انتشار 2016